
BASIC WATCHDOG TIMER
(Arduino UNO/ATmega328)
by Nicolas Larsen

There seems to be a lot confusion regarding the
setup of the watchdog timer which is what I hope to
clarify in a very basic manner. I will try my best to
explain things in clear english. This is only
applicable to boards running the Opti-bootloader
(standard Uno bootloader) and those running Lady
Adaʼs bootloader (although I have yet to test it on
the latter). Using Arduino IDE 0022

The watchdog timer is a very useful feature for
projects that are intended to run for extended
periods of time or contain unstable loops of code.
The watchdog is essentially a small timer that will
force a full system restart should it not receive a
“system ok” signal from the microcontroller within a
preset time. Should in any application the micro-
controller freeze, hang, stall or crash the watchdog
will time out and force a reset to the same effect as
pressing the reset button on your board.

Begin by importing the watchdog timer into your
code.

Youʼll now need to configure your watchdog timer
through one of the registers known as WDTCSR.
A register is a byte or several in the systemʼs
memory that is reserved for saving
system settings (in lay-mans
terms). Every feature will have a
register al located to it . The
microcontroller knows where to go
in i ts memory to get these
registers. The watchdog is no
different. The watchdog register,
composed of one byte, thus has 8
bits in on/off settings. A ʻ1 ʼ
indicates ʻONʼ and a ʻ0ʼ indicates
ʻOFFʼ. By default everything is set
to ʻOFFʼ so we only need to set the

#include <avr/wdt.h>

relevant bits to ʻONʼ. To the right is a table of the
different bits and their function.

WDIF - Sets an interrupt flag but you wont need to
worry about this. It is automatically flagged high
and low by the system.

WDIE - Enables Interrupts. This will give you the
chance to include one last dying wish (or a few
lines of code...) before the board is reset. This is a
great way of performing interrupts on a regular
interval should the watchdog be configured to not
reset on time-out.

WDCE - This is a safety to enable a configuration
mode that will last 4 clock cycles. Set this bit and
WDE high before attempting any changes to the
watchdog register. There isnʼt really any logic
behind this, you just have to set WDCE and WDE
to ʻ1 ̓ to enter a sort of ʻsetup mode ̓ in the
watchdog timer.

WDE - Enables system reset on time-out.
Whenever the Watchdog timer times out the
micocontroller will be reset. This is probably what
you were all looking for. Set this to ʻ1ʼ to activate.

WDP0/WDP1/WDP2/WDP3 - These four bits
determine how long the timer will count for before
resetting. The exact time is set by setting
combinations of the 4 bits in such a pattern.

So you can see the watchdog can be set anywhere
between 16ms and 8 seconds. To let the watchdog
timer know that everything is running ok and that it
neednʼt panic or take any action your going to have
to keep reseting the timer within your main loop.
This is done by periodically entering in:

Remember: the watchdog is a timer, if you donʼt
reset it regularly it will time-out, prompting the reset
and or interrupt.

wdt_reset();

11 June 2011

1

Bit Name
7
6
5
4
3
2
1
0

WDIF
WDIE
WDP3
WDCE
WDE

WDP2
WDP1
WDP0

WDP
3

WDP
2

WDP
1

WDP
0

Time-out
(ms)

0 0 0 0 16

0 0 0 1 32

0 0 1 0 64

0 0 1 1 125

0 1 0 0 250

0 1 0 1 500

0 1 1 0 1000

0 1 1 1 2000

1 0 0 0 4000

1 0 0 1 8000

Now you know the basic setting we are going to
create a function that sets up the watchdog timer to
include interrupts, a reset and time-out after
1000ms. It is good practice to comment in what you
are setting each of the bits to for later reference.

Lets cover this line by line. “cli();” disables all
interrupts on the microcontrol ler so that
configuration is never disrupted and left unfinished.

“wdt_reset();” resets the watchdog timer. This isnʼt
always necessary but you certainly donʼt want your
watchdog timing out and resetting while you are
trying to set it.

The above will prompt configuration mode enabling
you to make changes to the register. These
changes need to be set within 4-cycles so the
settings should follow immediately after this line. It
is unusual for registers to require a configuration
like this which may account for all the watchdog
timer confusion. Regardless, its in the ATmega328
data sheet so thats what we must all abide by.

Now we enter in the various bits as we laid out in
the comments. It is not necessary to set anything to
zero as I have done for WDP3/0, as by default
everything in the register is already at zero. I

void watchdogSetup(void)
{
 cli();

 wdt_reset();

/*
 WDTCSR configuration:
 WDIE = 1: Interrupt Enable
 WDE = 1 :Reset Enable
 See table for time-out variations:
 WDP3 = 0 :For 1000ms Time-out
 WDP2 = 1 :For 1000ms Time-out
 WDP1 = 1 :For 1000ms Time-out
 WDP0 = 0 :For 1000ms Time-out
*/

// Enter Watchdog Configuration mode:
WDTCSR |= (1<<WDCE) | (1<<WDE);

// Set Watchdog settings:
 WDTCSR = (1<<WDIE) | (1<<WDE) |
(0<<WDP3) | (1<<WDP2) | (1<<WDP1) |
(0<<WDP0);

sei();
}

// Enter Watchdog Configuration mode:
WDTCSR |= (1<<WDCE) | (1<<WDE);

included that so you can quickly modify the time-
settings should you wish to make changes.

If you are unfamiliar with bitwise and compound
operations the syntax may appear a bit odd to you.
I suggest you have a look on the Arduino
Reference Page for better understanding. The
same settings could just have easily been applied
in binary by:

Now that your done with the setup you can re-
enable interrupts by typing “sei()”. The watchdog
includes interrupts so be sure to re-enable this.

The only thing left to insert in your code is the
interrupt, should you have chosen to include it.
Note that the interrupt, like all interrupts cannot
make use of the “delay()” function. It is also poor
practice to call functions such as “Serial.println()”
in the interrupt as any error in the function may
cause the microcontroller to hang in the interrupt
preventing the watchdog from restarting.

The example code included on the next page sets
the watchdog timer to 2 seconds with an interrupt.
An expanding loop is included so that the watchdog
will eventually time-out and cause a reset. What
you will hopefully notice from the serial feed is that
the watchdog is not reset exactly after 2 seconds.
The watchdog is a very inaccurate timer and as
such should not be used for time critical
applications. With that said - nor is my ʻtimingʼ code
strictly accurate...

I hope this clarifies the basic setup of the watchdog timer
and some of its features. It is certainly not an exhaustive
list of features! If you find any errors please let me know.

DISCLAIMER: I am by no means an expert regarding
this topic and as such this document is provided as is.
Use this information at your own risk.

// Set Watchdog settings:
 WDTCSR = (1<<WDIE) | (1<<WDE) |
(0<<WDP3) | (1<<WDP2) | (1<<WDP1) |
(0<<WDP0);

// Enter Watchdog Configuration mode:
WDTCSR |= B00011000;
// Set Watchdog settings:
 WDTCSR = B01001110;

ISR(WDT_vect)
{
// Include your interrupt code here.
}

11 June 2011

2

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

11 June 2011

3

/*
Watchdog Timer Basic Example
10 June 2011
Nicolas Larsen
*/

#include <avr/wdt.h>

int loop_count = 0;

void setup()
{
 Serial.begin(9600);
 Serial.println("Starting up...");
 pinMode(13,OUTPUT);
 digitalWrite(13,HIGH);
 delay (500);
 watchdogSetup();
}

void watchdogSetup(void)
{
cli(); # # // disable all interrupts
wdt_reset();# // reset the WDT timer
/*
 WDTCSR configuration:
 WDIE = 1: Interrupt Enable
 WDE = 1 :Reset Enable
 WDP3 = 0 :For 2000ms Time-out
 WDP2 = 1 :For 2000ms Time-out
 WDP1 = 1 :For 2000ms Time-out
 WDP0 = 1 :For 2000ms Time-out
*/
// Enter Watchdog Configuration mode:
WDTCSR |= (1<<WDCE) | (1<<WDE);
// Set Watchdog settings:
 WDTCSR = (1<<WDIE) | (1<<WDE) | (0<<WDP3) | (1<<WDP2) | (1<<WDP1) | (1<<WDP0);
sei();
}

void loop()
{
for (int i = 0; i <= loop_count;i++){
 digitalWrite(13,HIGH);
 delay(100);
 digitalWrite(13,LOW);
 delay(100);
 }
 loop_count++;
 wdt_reset();
 Serial.print(loop_count);
 Serial.print(". Watchdog fed in approx. ");
 Serial.print(loop_count*200);
 Serial.println(" milliseconds.");
}

ISR(WDT_vect) // Watchdog timer interrupt.
{
// Include your code here - be careful not to use functions they may cause the interrupt to hang and
// prevent a reset.
}

