Compare commits

..

No commits in common. "d305281e5e0bdc81850db40935b66f1e79939ca2" and "f5601e4aaf1b2d117fe7a6ea1883e89128c6fed4" have entirely different histories.

17 changed files with 8 additions and 31292 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,84 +1,3 @@
# Imperial College London
# Sensing and IoT Coursework Project
#### Reducing water waste by automatically dispensing lower bound water amounts, calculated using a ML Model using present weather data
# ICL-IoT-Weather
## About
This project aims to integrate hardware IoT sensors (some RPi Zero's with I2C probes) and Machine Learning (Deep-NN) to predict how much water a outdoor garden will need every day.
The ML Model uses the last 24hrs of collected weather data to make a prediction around mow much water needs to be dispensed to keep the plants alive.
This approach hopes to reduce the overall water use by not watering plants in excess.
## Project diagram
```TODO```
## File Structure
<details>
<summary>This part is long, click to expand</summary>
- `data_collector/` Main data collector and uploader module
- `secrets/` Private API keys
- `icl-iot-weather-firebase-adminsdk.json` Firebase key for database access
- `weather_api_key.txt` OpenWeather API key
- `data_colelctor.py` Python script for data collection
- `Dockerfile` Containerizing the application
- `requirements.txt` Python requirements for running the script
- `data_processor/` ML on demand data processing module
- `firebase_python_image/` Since building a tf image takes ages, we build it once and use it for testing the ml script later
- `Dockerfile` Building a tensorflow image for armv7l
- `secrets/` Private API keys
- `icl-iot-weather-firebase-adminsdk.json` Firebase key for database access
- `watering_model.model/` Saved ML modelfor water predicitons
- `Dockerfile` Containerizing the application
- `water_predictor.py` On demand, real time watering predictor script
- `Diagrams/` Process and block diagrams
- `block_and_process_diagrams.drawio` TODO
- `lora_nodes/` Scripts running on the Pi Zero nodes
- `master/` Scripts running on the primary, internet connected Pi
- `irrigator/` Daily watering module
- `Dockerfile` Containerizing the application
- `irrigator.py` Daily watering script
- `requirements.txt` Python requirements for running the script
- `Dockerfile` Containerizing the application
- `main.py` Main data server, collects data from satellite over LoRa and returns over http
- `requirements.txt` Python requirements for running the script
- `satellite/` Data reading and sending module for the sensor Pi
- `Dockerfile` Containerizing the application
- `main.py` LoRa commend listener, temperature reader and pump controller
- `requirements.txt` Python requirements for running the script
- `manual_data_processing/` iPython notebooks used for data processing and model training
- `datasets/*` Various datasets used for processing and training
- TODO
- `site/*` Monitoring website, HTML+CSS+JS, hosted on Firebase
- `.gitignore` Gitignore file preventing all my API keys from showing up online...
- `README.md` See `README.md`
</details>
## Installation and running
1. Clone this repo
2. Create the secrets folders
3. Generate a set of firebase and OpenWeather API credentials and place them in the secrets folders, rename accordingly
4. Move the `master` folder to the main Pi
5. Move the `satellite` folder to the sensor Pi
6. Install Docker on all Devices
7. Build the docker images on the relevant architectures (for me everythong was build on armv7)
- `data_colelctor`: `docker build -t siot-weather-collector .`
- `data_processor`: `docker build -t siot-data-processor .`
- `master/irrigator`: `docker build -t master-node .`
- `master`: `docker build -t irrigator .`
- `satellite`: `docker build -t satellite .`
8. *NOTE: The ML Dockerfile is very long and complicated because tensorflow does not play well with a 32 bit arm architeture, if you are building for x86 or arm64, you may need to change the file*
9. Run the docker containers:
- The `data_collector` on the cloud device: `docker run -d --restart always --name siot_weather_collector siot-weather-collector`
- The `data_processor` on the cloud device: `docker run -dp 3535:3535 --restart always --name siot_watering_predictor siot-data-processor`
- The `master` on the master Pi: `docker run -dp 3333:3333 --privileged --restart always master-node`
- The `master/irrigator` on the master Pi: `docker run -d --privileged --restart always irrigator`
- The `satellite` on the sensor Pi: `docker run -d --privileged --restart always satellite`
10. While you are free to use my ML model included in this repo, I suggest you explore the `manual_data_processing` folder and create your own.
11. You will also need at least 24hrs of data before the model can make predictions, so the `siot-weather-collector` image must be started at least 24hrs before the others
## Maintainers and Contributors
Max Hunt: [me@maxhunt.design](mailto:me@maxhunt.design)
# TODO

View File

@ -4,4 +4,4 @@ COPY . .
RUN pip install -r requirements.txt
EXPOSE 80
EXPOSE 443
CMD "/code/data_collector.py"
CMD "/code/Data_collector.py"

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@ -1 +0,0 @@
<mxfile host="Electron" modified="2021-01-09T01:51:41.772Z" agent="5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/14.1.8 Chrome/87.0.4280.88 Electron/11.1.1 Safari/537.36" etag="gbp0hDtj5hE5ZAe5tMTm" version="14.1.8" type="device"><diagram id="QUbS_Z7dZOKaG96ER5AO" name="Page-1">7ZjbctowEIafhstkfMIhl4GQ0E4zTUtnuBZoa6uxJY+05tCnr4RlDJiC22nBdHqF/K800n76tdjq+IN0+SxJFr8ICknHc+iy4z92PM91nVD/GGVVKL3grhAiyWghOZUwZt/BjizVnFFQViskFCJBlu2KM8E5zHBHI1KKxW63ryKhO0JGIqgJ4xlJ6uqEUYxtFt5dpY+ARbGdudvzi0BKyr42ERUTKhZbkj/s+AMpBBatdDmAxLDbxfL0k+hmXRI4Nhmw4CIMsuebKet+ehu+fV6+5083drFzkuQ2X7tYXJUAgGoe9lFIjEUkOEmGldqXIucUzDSOfqr6fBAi06KrxW+AuLKbS3IUWooxTWy0norNTolczuDI+ktHEBkBHuln0zK5bE1gQT2DSAHlSneQkBBk8929J9ZC0aZfhVk3LOlfoO7WqH+BNOt4/VGeMsrQrEQBV0LWdqNibcAtYoYwzsia0UIfwIZc5yARlkdJlNHSvvb4uqF9XlSHwQ2sFm8dhFL74/C6V25Zr6Flg1ZZ1jtAPUz0+vtT3YhMY2wd67yyTUyWwVLRk28GPBIk6wQIhcs73euddnrvnEa/u3KjBw2NHrbK6MFpo78QhfBbRk/I6uI+9xv4/P6cPr+/cp+HDX3ea5XPy/fr/9jPi/3QH+m/iN11W8U9bFLWGTeTeI6p1wNNZq/Ib5f0euEfCYWMR2bxnJoP3qLoZ1LMQKl15MKVP7hv8C4fnrP0907vitmLKVHQbBOemISit2OaCoWEi3MP97n73Tp375zc3foXaA38BKYPWdYMu2ICb1OyjHOOtxQUi3j7qJc3M5ejHlxXqXf9hrW+XW/w7qFLrT1zf8yAT4BgvC7xD6/vmvm8GlJV9zlrw9er7++53fl79zT6sbq2XMe27n794Q8=</diagram></mxfile>

File diff suppressed because one or more lines are too long

View File

@ -1,4 +1,3 @@
#!/usr/local/bin/python
import logging
import firebase_admin
@ -10,17 +9,15 @@ from tensorflow import keras
class Firebase:
def __init__(self):
self.creds = credentials.Certificate(
'secrets/icl-iot-weather-firebase-adminsdk.json')
'icl-iot-weather-firebase-adminsdk.json')
firebase_admin.initialize_app(self.creds)
self.db = firestore.client()
logging.debug('Initialized firebase instance')
def pull_from_db(self, orderby=u'timestamp'):
doc_ref = self.db.collection('weather_data')
query = doc_ref.order_by(orderby,
direction=firestore.Query.DESCENDING).limit(1)
doc = query.stream()
logging.debug('Got doc file from firestore')
return doc
def convert_to_float(self, data):
@ -40,14 +37,11 @@ class VirtualProbe:
def __init__(self):
self.firebase = Firebase()
self.model = keras.models.load_model('virtual_probe.model')
logging.debug('Loaded ML model')
def predict_soil_temp(self):
feature = self.firebase.get_feature()
predicted_temp = float(self.model.predict([feature])[0][0])
predicted_temp_2dp = float("{:.1f}".format(float(predicted_temp)))
logging.debug(f'Predicted temp: {predicted_temp_2dp}')
return predicted_temp_2dp
predicted_temp = self.model.predict([feature])
return predicted_temp
if __name__ == "__main__":

Binary file not shown.

Before

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 193 KiB

2009
grad.ai

File diff suppressed because one or more lines are too long

View File

@ -3,4 +3,5 @@ WORKDIR /code
COPY . .
RUN pip install requests
RUN pip install -r requirements.txt
CMD "/code/irrigator.py"
EXPOSE 3333
CMD "/code/main.py"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 798 KiB

After

Width:  |  Height:  |  Size: 5.7 MiB

Binary file not shown.

File diff suppressed because one or more lines are too long